
1

Implementing a Database Management System

for a P2P Lending Platform

Group 1

Penglin Du

Xinrui Dong

Suzy Gao

Yumeng Gu

Jia Yang

2

Implementing a Database Management System

for a P2P Lending Platform

Table of Contents

1 Consultant / Client Scenario…………………..3

1.1 The choice for the scenario……………………………..3

1.2 Reason, motivation, and research...3

1.3 The initial plan of action………..........…………...…………………….3

1.4 Improve the company's decision-making process and other benefits………………………………….3

2 Team Contract / Dataset...4

2.1 Team contract...4

2.2 Project dataset..4

3 Normalization Plan / ER Diagram...5

3.1 Create schema..5

3.2 Normalization..7

3.3 ER Diagram..10

4 ETL Process (Plan and Execution) / GitHub Repo..10

4.1 ETL process..10

4.2 GitHub repo...14

5 Analytical Procedures / SQL and R Code...14

5.1 Analytical procedures and code for Borrower section..…....................14

5.2 Analytical procedures and code for Borrower section..18

5.3 Conclusion for analytical procedures...…....................19

5.4 Create view...20

6 Dashboards / Conclusion / Recommendation...…....................21

6.1 Dashboards...21

6.2 Conclusion...23

6.3 Recommendation...23

7 References...24

8 Appendix..24

9 Links...24

3

1 Consultant / Client Scenario

1.1 The choice for the scenario

Implementing a database management system for a P2P lending platform.

1.2 Reason, motivation, and research

The peer-to-peer(P2P) lending marketplace works through a simple online platform,

which connects borrowers and lenders. Since P2P are wide-area and large-scale

systems that provide content sharing and storage services, having a well-designed

database is crucial for them to manage the massive amount of information. To be

specific, P2P systems do not lend their own funds but act as facilitators to both the

borrower and the lender. With the rising popularity of peer-to-peer lending platforms,

competition and products have increased as well. While these marketplaces operate on

the same basic principle, they vary in terms of eligibility criteria, loan rates, amounts,

and tenures as well as offerings. Some focus on personal loans, and a few target

students and young professionals, while some cater exclusively to business needs.

1.3 The initial plan of action

The initial plan of actions after proposing the scenario and finding data includes but are

not limited to fully exploring the datasets, deciding and assigning tasks, normalizing the

raw datasets, developing a relational schema, drawing the ER diagrams, designing the

ETL process, conducting analysis on the relational database, obtaining insights for the

P2P lending platform, constructing interactive dashboards, and self-evaluation and

future improvement. The initial design for our database involves three main entities: the

investors who lend money, the borrowers who request it, and load information which

may include loan fulfillment and repayment data.

1.4 Improve the company's decision-making process and other

benefits

By designing a clear database for automatically storing and easily retrieving the data,

our work will help the company keep track of basic transactions, provide information on

borrowers and investors, and generate insights through various analytical procedures

that will help the company run the business more efficiently, help managers and

employees make better decisions, mitigate investment risks, and at last improve the

whole decision-making process.

4

2 Team Contract / Dataset

2.1 Team contract

2.2 Project dataset

5

2.2.1 Dataset

The dataset we choose is an open dataset from Prosper, a P2P lending platform.

Link to the dataset: https://docs.google.com/spreadsheets/d/1edot-MfpCHP-

DgHhS36L-U7C4if-it6kukOwHx_Mm-k/edit?usp=sharing

Link for downloading the original data source: https://s3.amazonaws.com/udacity-

hosted-downloads/ud651/prosperLoanData.csv

2.2.2 Reasons for choosing the data

The original dataset has a rich record of 81 variables and 113,979 observation for each

loan list data from 2005 to 2014, which are suitable for database design. The database

mainly contains four groups of data:

1. Loan Status: The status of the loan list, such as Cancelled, Charged off,

Completed, Current, Defaulted, Final Payment In Progress, Past Due.

2. Borrower Data: Basic properties about borrowers such as income, occupation,

employment status, etc.

3. Loan Data: Basic properties about the loan such as length of the loan(term),

Borrower APR, etc.

4. Credit Risk Metrics: Metrics measured the risk of loans, such as Credit grade,

Prosper Score, bank card utilization, etc.

However, the above data with only the information of borrower and loan is not enough

for comprehensive database design. Since the data of investor is not open to the

public, in order to make the dataset more suitable for database design, information

about the investor is generated and linked to the borrower by loan information. A

sample dataset with 1,000 rows is used for the following procedures.

3 Normalization Plan / ER Diagram

3.1 Create schema

3.1.1 Investors section

#CREATE TABLE

stmt <- 'CREATE TABLE phones (

phone_id char(10),

phone_number varchar(20),

PRIMARY KEY(phone_id));'

6

dbGetQuery(con, stmt)

stmt<- 'CREATE TABLE nominee(

nominee_id varchar(50),

nominee_first_name varchar(50),

nominee_last_name varchar(50),

nominee_relationship_with_investor varchar(30),

nominee_date_of_birth date,

PRIMARY KEY (nominee_id));'

dbGetQuery(con, stmt)

stmt<- 'CREATE TABLE payment_bank(

payment_bank_id char(10),

payment_bank_name varchar(50),

PRIMARY KEY (payment_bank_id));'

dbGetQuery(con, stmt)

 (Please check the detailed codes on GitHub, we only post a sample code for creating table in this

report, GitHub link: https://github.com/suzygaoo/P2P-lending-platform-database-system)

3.1.2 Borrowers section

#CREATE TABLES

stmt <- 'CREATE TABLE b_phones (

phone_id char(10),

phone_number varchar(20),

PRIMARY KEY(phone_id));'

dbGetQuery(con, stmt)

stmt <- 'CREATE TABLE borrower (

borrower_id varchar(10),

first_name varchar(50),

last_name varchar(50),

state varchar(50),

city varchar(50),

street_address varchar(50),

zip_code varchar(10),

PRIMARY KEY (borrower_id));'

dbGetQuery(con, stmt)

stmt <- 'CREATE TABLE loan_ticket (

loan_ticket_id varchar(10),

borrower_id varchar(10),

loan_amount numeric(10,2),

loan_tenure_in_month numeric,

reason_for_loan text,

https://github.com/suzygaoo/P2P-lending-platform-database-system

7

borrow_rate decimal(8,6),

borrower_apr decimal(8,6),

loan_status varchar(50),

PRIMARY KEY (loan_ticket_id),

FOREIGN KEY (borrower_id) REFERENCES borrower);'

dbGetQuery(con, stmt)

(Please check the detailed codes on GitHub, we only post a sample code for creating table in this report,

GitHub link: https://github.com/suzygaoo/P2P-lending-platform-database-system)

3.1.3 Investor proposal section

CREATE TABLE Investor_proposal(

investor_proposal_id varchar(10),

Investor_id char(10),

Loan_ticket_id varchar(10),

proposal_amount numeric(9,2),

proposal_date date,

cancel_date date,

PRIMARY KEY(investor_proposal_id),

FOREIGN KEY(investor_id) REFERENCES investor(investor_id),

FOREIGN KEY(loan_ticket) REFERENCES investor(loan_ticket_id));

3.2 Normalization

3.2.1 Normalization process with Borrower sample dataset

The original borrower dataset is not in 1NF, as the value of phone_numbers and credit

agency are not atomic. Making it into 1NF by separating the non-atomic value and

bringing out the data of phone numbers and make an entity phone table and

https://github.com/suzygaoo/P2P-lending-platform-database-system

8

borrower_phone relational table.

After the first step, the dataset is now in 1NF. Next is to achieve the 2NF by getting rid

of the partial dependency in credit rating agencies and add a credit rating agency table,

a credit info table.

At this point, the dataset is already in 2NF. Moving further to 3NF, the transitive

dependency of loan, employment, delinquency, income should be removed by creating

a loan_ticke_table, an employment table, a prosper index table, a liability table, a

delinquency table, and an income info table. By normalizing the original dataset into

3NF, the dataset is now broken up into 11 tables.

3.2.1 Normalization process with Investor sample dataset

9

The original investor dataset is not in 1NF, as the value of phone_numbers and

payment account, bank info is not atomic. Making it into 1NF by separating the non-

atomic value and bringing out the data of phone numbers and make an entity phone

table and investor_phone relational table.

After the first step, the dataset is now in 1NF. Next is to achieve the 2NF by getting rid

of the partial dependency in payment account type, payment account name, etc. and

add a payment bank table, a payment method table.

10

At this point, the dataset is already in 2NF. Moving further to 3NF, the transitive

dependency of nominee and transaction should be removed by creating a nominee

table and an account_statement table. By normalizing the original dataset into 3NF, the

dataset is now broken up into 7 tables. Adding one more relational table that connects

the investor with loan tickets, the dataset in total is normalized into 19 tables.

3.3 ER Diagram

Please check the Appendix 1 for the ER Diagram.

4 ETL Process (Plan and Execution) / GitHub Repo

4.1 ETL process

4.1.1 Extract

In the ETL process, the first step is to extract data, which is the process of reading data

from a database. In this stage, the data is collected, often from multiple and different

types of sources. In order to obtain border aspects of information on the Peer-to-peer

platform, three sets of data were used in this project: Lending Club Load Data, Borrower

data, and 10-Year Treasury Constant Maturity Rate. The CSV file for the prosper loan

data was downloaded from the Prosper website(prosper.com). The borrower data was

randomly generated from Mockaroo website (https://mockaroo.com/), which includes

11

mostly geographic information of the borrowers. The 10-year US treasury data was

gathered from the Interworks website. (https://wdc.portals.interworks.com/fred_20/)

After successfully extract necessary data from the original sources, the next step is to

merge two datasets and convert them into a single format for standardized processing.

In this project, the information about investor and loan was extracted from Prosper

dataset, combined with the borrower information, would be able to contain sufficient

data about each loan the company lent.

The 10-Year Treasury Constant Maturity Rate will not be merged as it will only be used

for visualization at the end of the project.

4.1.2 Transform

Transform is the process of converting the extracted data from its previous form into

the form it needs to be in so that it can be placed into another database.

Transformation occurs by using rules or lookup tables or by combining the data with

other data. Our transformation process includes removing extraneous or erroneous

data (cleaning), applying business rules, checking data integrity, and creating

aggregates as necessary. Below are the steps for data transformation:

1. Splitting: Splitting a single column into multiple columns.

For columns that have multiple entries in the same row, first we need to separate them

in R using function 'seperate_row': credit_rating_agency, establish_year, credit_score

since they have multiple entries in the same row, phone_numbers,

payment_account_types, payment_account_holder_names,

payment_account_numbers,payment_bank_names

2. Deduplication: Identifying and removing duplicate records, create unique

identifiers.

For columns that need to separate from the original dataset and create new tables in

the database in order to achieve 3NF, we need to assign a unique identifier for each of

them: employment_id, credit_rating_agency_id, credit_info_id, prosper_index_id,

borrow_liability_id, delinquency_history_id, income_info_id, nominee_id, phone_id,

payment_bank_id, payment_method_id, investor_id, account_statement_id

3. Cleaning: convert data types to maintain data format consistency.

12

Data in the investor sections are simple text data, which is not suitable for our schema

and may cause trouble loading in. Thus, we need to convert them into proper data types

according: date_of_birth, transaction_date, transaction_amount, and closing_date.

4. Missing Values.

For some of the columns that contain NA values, we need to find the best way to deal

with those missing values. Our dataset contains few missing values, also, according to

our scenario, there is no need to fill all the missing values because the real-world data is

not perfect most of the time, and it is reasonable that some fields are empty in the

dataset. For example, ssn, phone_number, zip_code, etc., these features are

meaningless for the following process of conducting analysis and getting insights.

4.1.3 Load

Loading data to the target multidimensional structure is the final step in the ETL

process. In this step, extracted and transformed data is written into the dimensional

structures actually accessed by the end users and application systems, where they can

be integrated, rearranged, and consolidated, creating a new type of unified information

base for reports and reviews.

Below is the code for loading data into our database:

###import investor data

library(readxl)

investor <- read_excel("~/Downloads/SQL_Project_Group1.xlsx",

 sheet = "Investor", col_types = c("numeric",

 "text", "text", "text", "date", "text",

 "text", "text", "text", "text", "text",

 "text", "text", "text", "text", "text",

 "text", "text", "text", "text", "date",

 "text", "text", "numeric", "date",

 "numeric"))library(dplyr)

library(tidyr)

#assign account_statement_id

investor$X__1 <- NULL

investor <- bind_cols('account_statement_id' = sprintf('a%09d',1:nrow(investor)), investor)

#separate phone column

investor <- investor%>%

 separate_rows(phone_numbers)

#separate rows

investor <- investor %>%

13

 separate_rows(payment_account_types, payment_account_holder_names,

payment_account_numbers,

 payment_bank_names, sep= '\\|')

investor <- filter(investor, payment_account_types != '')

investor<- filter(investor, phone_numbers !='')

df<-investor

#load data

#nominee table

df1 <- df %>% select(nominee_first_name, nominee_last_name, nominee_date_of_birth,

nominee_relationship_with_investor) %>% distinct()

df2 <- bind_cols('nominee_id' = sprintf('n%09d', 1:nrow(df1)),df1)

dbWriteTable(con,name = 'nominee',value = df2, row.names = FALSE,append=TRUE)

df <- df %>% inner_join(y = df2, by = c('nominee_first_name','nominee_last_name'))

#phone table

df1 <- df %>% select('phone_number'= phone_numbers) %>% distinct()

df2 <- bind_cols('phone_id' = sprintf('p%09d', 1:nrow(df1)),df1)

dbWriteTable(con,name = 'phones',value = df2, row.names = FALSE,append=TRUE)

df <- df %>% inner_join(y = df2, by = c('phone_numbers'='phone_number'))

#payment_bank_name

df1 <- df %>% select('payment_bank_name'= payment_bank_names) %>% distinct()

df2 <- bind_cols('payment_bank_id' = sprintf('B%09d', 1:nrow(df1)),df1)

dbWriteTable(con,name = 'payment_bank',value = df2, row.names = FALSE,append=TRUE)

df <- df %>% inner_join(y = df2, by = c('payment_bank_names'='payment_bank_name'))

(Please check the detailed codes on GitHub, we only post a sample code for creating table in this report,

GitHub link: https://github.com/suzygaoo/P2P-lending-platform-database-system)

###import borrower data

df <- read_xlsx("~/Desktop/SPRING 19/SQL/project/borrower_new.xlsx")

df <- separate_rows(df, credit_rating_agency,establish_year,credit_score,

 sep = '\\|')

#separate phone column

df <- df%>%

 separate_rows(phone_numbers)

#phone table

df1 <- df %>% select('phone_number'= phone_numbers) %>% distinct()

df2 <- bind_cols('phone_id' = sprintf('p%09d', 1:nrow(df1)),df1)

dbWriteTable(con,name = 'b_phones',value = df2, row.names = FALSE,append=TRUE)

df <- df %>% inner_join(y = df2, by = c('phone_numbers'='phone_number'))

#borrower

df1 <- df %>% select(borrower_id,first_name,last_name,state,city,

https://github.com/suzygaoo/P2P-lending-platform-database-system

14

 street_address,zip_code) %>% distinct()

dbWriteTable(con,name = 'borrower', value = df1, row.names = FALSE, append = TRUE)

#loan_ticket

df1 <- df %>% select(loan_ticket_id,borrower_id,loan_amount,loan_tenure_in_month,reason_for_loan,

 borrow_rate,borrower_apr,loan_status) %>% distinct()

dbWriteTable(con,name = 'loan_ticket', value = df1, row.names = FALSE, append = TRUE)

(Please check the detailed codes on GitHub, we only post a sample code for creating table in this report,

GitHub link: https://github.com/suzygaoo/P2P-lending-platform-database-system)

###import investor_proposal

SQL_Project_investor_proposal <- read_csv("investor_proposal.csv")

df <- SQL_Project_Investor_proposal

df1 <- df %>% select(loan_ticket_id, investor_id) %>% distinct()

df2 <- bind_cols('investor_proposal_id' = sprintf('ip%09d', 1:nrow(df1)), df1)

dbWriteTable(con, name = 'investor_proposal', value = df2, row.names = FALSE, append = TRUE)

4.2 GitHub repo

GitHub link: https://github.com/suzygaoo/P2P-lending-platform-database-system

5 Analytical Procedures / SQL and R Code

Now we have formed the final database, and we plan to help our customers to interact

with the database system we designed.

For analysts, we will help them learn how to make changes to the database, and how to

utilize our database for analyzing the operational conditions and problems of the

company. The tool we use is SQL, to be specific, analysis is conducted from the

borrower side and investor side, and the implements and queries are as follow.

5.1 Analytical procedures and code for Borrower section

1. Find the borrowers whose monthly income is ranked in the top 5 for each of the

states with the top 5 numbers of borrowers. These people are the target borrowers of

the marketing campaign.

SELECT STATE, BORROWER, INCOME

FROM

(SELECT i.state AS STATE, i.borrower_id AS BORROWER,

i.stated_monthly_income AS INCOME, RANK()OVER(PARTITION BY i.state ORDER BY

i.stated_monthly_income DESC) AS b_rank, row_number

https://github.com/suzygaoo/P2P-lending-platform-database-system
https://github.com/suzygaoo/P2P-lending-platform-database-system

15

FROM (SELECT i.stated_monthly_income, b.borrower_id, b.state

FROM income_info i JOIN borrower b on i.borrower_id = b.borrower_id) AS i JOIN

(SELECT state, ROW_NUMBER()over(ORDER BY a_rank ASC) AS row_number

FROM

(SELECT state, RANK()OVER(ORDER BY COUNT(borrower_id) DESC) AS a_rank

FROM borrower

GROUP BY state) AS FOO

WHERE a_rank <= 5) AS c ON i.state = c.state) AS FOO

WHERE b_rank <= 5

ORDER BY row_number ASC, INCOME DESC;

2. Find the borrowers whose monthly income is ranked in the lowest 5 for each of the

states with the top 5 numbers of borrowers. These people should be regularly managed

and checked in case they do not have enough money to pay back the loan on time.

SELECT STATE, BORROWER, INCOME

FROM

(SELECT i.state AS STATE, i.borrower_id AS BORROWER,

i.stated_monthly_income AS INCOME, RANK()OVER(PARTITION BY i.state ORDER BY

i.stated_monthly_income ASC) AS b_rank, row_number

FROM (SELECT i.stated_monthly_income, b.borrower_id, b.state

FROM income_info i JOIN borrower b on i.borrower_id = b.borrower_id) AS i JOIN

(SELECT state, ROW_NUMBER()over(ORDER BY a_rank ASC) AS row_number

FROM

(SELECT state, RANK()OVER(ORDER BY COUNT(borrower_id) DESC) AS a_rank

FROM borrower

GROUP BY state) AS FOO

WHERE a_rank <= 5) AS c ON i.state = c.state) AS FOO

WHERE b_rank <= 5

ORDER BY row_number ASC, INCOME ASC;

3. Count the average loan amount for each occupation. This help to recognize the target

occupations, for instance, if students are in large need of loans, Prosper could organize

its marketing campaign in schools.

SELECT e.occupation, ROUND(avg(l.loan_amount),0) AS loan_amount

FROM employment e JOIN loan_ticket l on e.borrower_id = l.borrower_id

GROUP BY e.occupation

ORDER BY loan_amount DESC;

4. The average score of each credit rating agency. This helps recognize the different

rating standards for each credit rating agency.

SELECT credit_rating_agency,

ROUND(AVG(credit_score),0) AS credit_score

16

FROM credit_info

JOIN credit_rating_agency USING(credit_rating_agency_id)

GROUP BY credit_rating_agency;

5. Top 5 states and cities which have the highest borrower average monthly income.

SELECT state, city, COUNT(borrower_id),ROUND(AVG(stated_monthly_income)) AS monthly_income

FROM borrower

JOIN income_info USING(borrower_id)

GROUP BY state,city

ORDER BY COUNT(borrower_id) DESC

LIMIT 5;

6. Reason for loans which generate the most delinquent.

SELECT reason_for_loan, ROUND(AVG(amount_delinquent),0)

FROM loan_ticket

JOIN delinquency_history USING(borrower_id)

GROUP BY reason_for_loan

ORDER BY AVG(amount_delinquent) DESC;

7. The gap between borrower's monthly payment and loan amount each month. This

helps to ensure the security of cash flow.

SELECT EXTRACT (MONTH FROM liability_start_date) AS month, SUM(monthly_repayment_amount)

AS monthly_repayment, SUM(loan_amount) AS loan_amount

FROM borrow_liability

JOIN loan_ticket USING(loan_ticket_id)

GROUP BY month

ORDER BY month ASC;

8. Transform credit rating scores into 8 levels(AA, A, B, C, D, E, F, N).

CREATE OR REPLACE FUNCTION score_to_letter (prosper_rating numeric (2,1))

RETURNS varchar(2) AS

fun

DECLARE rating_lvl varchar(2);

BEGIN

 IF $1 = '1' THEN rating_lvl = 'F';

 ELSEIF $1 = '2' THEN rating_lvl = 'E';

 ELSEIF $1 = '3' THEN rating_lvl = 'D';

 ELSEIF $1 = '4' THEN rating_lvl = 'C';

 ELSEIF $1 = '5' THEN rating_lvl = 'B';

 ELSEIF $1 = '6' THEN rating_lvl = 'A';

 ELSEIF $1 = '7' THEN rating_lvl = 'AA';

17

 ELSE rating_lvl ='N';

 END IF;

RETURN rating_lvl;

END;

fun

language plpgsql;

SELECT *, score_to_letter (prosper_rating) Rating_Lvl

FROM prosper_index;

9. Transform the income information into High/Moderate/Low groups and calculate the

size of each group.

CREATE OR REPLACE FUNCTION income_to_lvl (stated_monthly_income numeric (10,2))

RETURNS varchar(2) AS

fun

DECLARE income_lvl varchar(2);

BEGIN

 IF $1 < 3000 THEN income_lvl = 'L';

 ELSEIF $1 < '6000' THEN income_lvl = 'M';

 ELSE income_lvl ='H';

 END IF;

RETURN income_lvl;

END;

fun

language plpgsql;

SELECT *, income_to_lvl (stated_monthly_income) Income_Lvl

FROM income_info;

SELECT COUNT(income_to_lvl (stated_monthly_income)) AS H

FROM (SELECT *,income_to_lvl (stated_monthly_income) Income_Lvl

 FROM income_info) AS a

WHERE Income_Lvl = 'H';

SELECT COUNT(income_to_lvl (stated_monthly_income)) AS M

FROM (SELECT *,income_to_lvl (stated_monthly_income) Income_Lvl

 FROM income_info) AS a

WHERE Income_Lvl = 'M';

SELECT COUNT(income_to_lvl (stated_monthly_income)) AS L

FROM (SELECT *,income_to_lvl (stated_monthly_income) Income_Lvl

FROM income_info) AS a

WHERE Income_Lvl = 'L';

SELECT COUNT(income_to_lvl (stated_monthly_income)) AS H

18

FROM (SELECT *,income_to_lvl (stated_monthly_income) Income_Lvl

FROM income_info) AS a

WHERE Income_Lvl = 'H';

10. Top 5 states with the largest numbers of borrowers. For where to set new branches

and expand business in the future, these states are the first choice.

SELECT b.state, COUNT(borrower_id)

FROM borrower b

GROUP BY b.state

ORDER BY COUNT(borrower_id) DESC

LIMIT 5;

5.2 Analytical procedures and code for Borrower section

1. Average investment limit for investors in different aging ranges.

CREATE OR REPLACE FUNCTION dob_to_age(date_of_birth date)

RETURNS varchar(20) AS

fun

DECLARE age varchar(20);

BEGIN

 IF $1 BETWEEN '1960-01-01' AND '1969-12-31' THEN age = '60s';

 ELSEIF $1 BETWEEN '1970-01-01' AND '1979-12-31' THEN age = '70s';

 ELSEIF $1 BETWEEN '1980-01-01' AND '1989-12-31' THEN age = '80s';

 ELSEIF $1 BETWEEN '1990-01-01' AND '1999-12-31' THEN age = '90s';

 END IF;

 RETURN age;

 END;

fun

language plpgsql;

SELECT *, dob_to_age(date_of_birth)

FROM investor;

SELECT dob_to_age(date_of_birth), ROUND(AVG(investment_limit), 2)

FROM investor

GROUP BY dob_to_age(date_of_birth)

ORDER BY ROUND(AVG(investment_limit), 2) DESC;

2. Top 5 cities with the largest number of investors.

SELECT city, COUNT(investor_id)

FROM investor

GROUP BY city

ORDER BY COUNT(investor_id) DESC

19

3. The number of investors of each payment bank. If the result shows a large difference

between different payment banks, Prosper could recognize the payment bank which

has the most investors and consider to have a long-term cooperative relationship with

this bank.

SELECT payment_bank_name, COUNT(investor.investor_id)

FROM investor

JOIN payment_method ON investor.investor_id = payment_method.investor_id

JOIN payment_bank ON payment_method.payment_bank_id = payment_bank.payment_bank_id

GROUP BY payment_bank_name

ORDER BY COUNT(investor.investor_id) DESC;

5.3 Conclusion for analytical procedures

In the database we design, our clients can check the investors’ and borrowers’ detailed

information which covers the aspects of income, credit, account statement,

demographic info, etc. The analytics team can simply check or filter data by SELECT,

FROM, or CREATE VIEW function to define a view of a query. Furthermore, our

database allows them to update or delete data for their real-time requirements. We have

also designed an interactive dashboard on metabase which allows our client to interact

with visualized diagrams. This dashboard will help the “C” level officers to intuitively

understand the key features we have identified for borrowers and investors, as well as

some insightful information that we think might be helpful for company managers in

making business strategies.

In addition, we have proposed 13 analytical procedures including the customer portals

of borrowers and investors, the gap between loan and payment in each month,

geographical portals and income portals of borrowers and investors, and information

about credit rating agencies. These analytical procedures can give a comprehensive

knowledge for Prosper analysts team to understand the current situation of its users and

the market by running the query in PostgreSQL query tool or in programming language

R.

What’s more, based on our analytics, we have built a dashboard for the “C” level

officers and generated applicable strategies for management. For instance, by

comparing the monthly loan out amount and repayment amount, we can find an obvious

gap between them which might cause cash flow problem or funding mismatch,

executives can easily find this problem by visualization, and immediately propose

strategies to solve it.

20

Additionally, from geographical data, we find that most of the borrowers live in New

York, Texas, California, and Florida and there are 4 other states with no borrowers.

Therefore, Prosper should consider extending its business to these 4 unoccupied states

to earn a leading position in the local market. Take these analyses as examples, we

could create an authentic report for the C suits and assist them in making strategic

decisions and plans.

Although our database is well designed enough for all non-technical people to interact

with due to the metabase dashboard visualization for all users even without a technical

background, we still choose to use R as the main programming language, the benefit of

performing database actions with programming language is to conduct actions faster

and easier to modify.

Considering the possible redundancy and performance problems, we test the

compliance of data when needing to add new data into the database, and we have

transformed some features from scattered distributing values to categories and this has

benefited our analysis and revealing process. We do have the same data stored in

multiple tables and some of the information in our charts are repetitive but can generate

different insights based on a different scenario. The efficiency of the data retrieval

process is relatively high because of the logical design. Our clients can approach this

database on the cloud by connecting with Cloud SQL, they can also make an on-

premise database by setting up an enterprise internal database center.

We have also set up an interactive dashboard on Tableau, which does an excellent job

in visualization.

5.4 Create view

21

Creating view is a useful method commonly used for reporting purposes and ensuring

data security at the same time. This helps analysts pull out necessary data from the

database more efficiently, it allows employees to create read-only views to expose

read-only data to specific users. Below is the SQL code for creating a view that shows

borrower's information as well as their credit rating information:

CREATE VIEW borrower_income_credit_rating_details AS

 SELECT b.borrower_id, b.first_name, b.last_name, b.zip_code, e.occupation,

e.employment_status_duration,

 c.current_credit_lines, c.credit_score,r.credit_rating_agency

 FROM borrower b

 JOIN employment e ON b.borrower_id = e.borrower_id

 JOIN income_info i ON b.borrower_id = i.borrower_id

 JOIN credit_info c ON b.borrower_id = c.borrower_id

 JOIN credit_rating_agency r ON c.credit_rating_agency_id = r.credit_rating_agency_id;

6 Dashboards / Conclusion / Recommendation

6.1 Dashboards

6.1.1 Metabase dashboard

22

Metabase Dashboard: http://s19db.apan5310.com:3201/public/dashboard/ee8a48c2-

7d83-4229-ba12-619efa7586ce

6.1.2 Tableau dashboard

Tableau Dashboard: https://public.tableau.com/profile/jia.yang#!/

6.1.3 Insights from dashboards

Our dashboard focus on two kinds of information: demographic and risk-related

information of borrowers and investors.

Figure 1 shows the distribution of our borrowers in different states and their average

credit score. Another part of Figure 1 shows the distribution of our investors and the

fund they invest.

Figure 2 demonstrates a variety of risk metrics of the users who borrow more than

$100,000 in Prosper. The risk metrics include credit score, number of delinquents,

amount of delinquent and borrow apr.

Figure 3 shows the income condition of our borrowers, which is an important financial

metrics to know our customers

Figure 4 shows the capital flow of Prosper. The bar chart means the inflow of capital

from investors while the blue line shows the outflow of the loan amount to our

borrowers. This We know the balance of our cash every year.

Figure 5 shows the age distribution of our borrowers, which could help us know the

demographic information of our borrowers.

https://public.tableau.com/profile/jia.yang#!/

23

Figure 6 shows the 10-year treasury maturity rate, which is an important financial index

that affects loan rate and our business.

6.2 Conclusion

Our goal is to store, organize and analyze all the data of Prosper and get useful

insights for the company to know the clients and manage the loan risk. In RDBMS, data

are stored in columns and rows, which makes it easy to access and manage data.

RDBMS can preserve the integrity of data and provide a review which can hide

sensitive tables and protect our data. The process of ETL is to integrate data and

combine different data in a meaningful way so we can conduct analysis on them.

A better understanding of our customers, such as their age, incomes, and locations,

could help Prosper to know who are our customers, hot to choose better media

channels to reach our customers, and attract more clients.

To a peer to peer lending company, risk management is the most essential part of the

whole business.

The risk metrics in our dashboard, which include the loan amount, credit score and

delinquent information, help Prosper to measure and monitor the risk of their loans.

With these dashboards, Prosper can easily find out the borrowers with a high risk of

default. For those high-risk borrowers, such as borrowers have a large amount of

delinquents, low credit scores and large loan, Prosper could take actions to mitigate

this risk.

6.3 Recommendation

1. Since the company does not have a business in Wyoming, North Dakota,

Montana, and Vermont, so the management team should work on creating strategies to

extend its business into uncovered states.

2. There are serious cash flow gaps between loan out amount and repayment

amount which might cause a capital mismatch. Therefore, the Prosper management

team should take care of the cash flow condition and prepare strategies for solving this

problem.

3. For those borrowers with a high probability of default, such as b46587 and

b12654, whose credit score is around 500 and enjoy below average loan rate, we

should charge them higher rates to hedge the default risk.

24

4. Based on the analytic, we found most of our investors’ ages are between 20-40

so Prosper could use more online media channels such as social media and PPC (Par

per Click) marketing channels to reach more target investors. On the other side, we

could use the demographic data to know our target borrowers and adjust media plan.

Given the fact that Prosper doesn’t have the age data of our borrowers, Prosper should

collect those data in the future to conduct data analytics and create a more efficient

marketing strategy.

7 References

[1] https://www.sciencedirect.com/science/article/pii/S131915781100019X

[2] https://www.vertabelo.com/blog/technical-articles/connecting-borrowers-and-

lenders-a-peer-to-peer-lending-platform-data-model

[3] https://towardsdatascience.com/p2p-lending-platform-data-analysis-exploratory-

data-analysis-in-r-part-1-32eb3f41ab16

8 Appendix

[1] ER Diagram

9 Links

[1] Dataset: https://docs.google.com/spreadsheets/d/1edot-MfpCHP-DgHhS36L-U7C4if-

it6kukOwHx_Mm-k/edit?usp=sharing

[2] Original data downloading: https://s3.amazonaws.com/udacity-hosted-

downloads/ud651/prosperLoanData.csv

[3] GitHub: https://github.com/suzygaoo/P2P-lending-platform-database-system)

[4] Lucidchart: https://www.lucidchart.com/invitations/accept/20158b3f-86ce-4ca7-a47a-

e8a8bb58b225

[5] Metabase Dashboard:

http://s19db.apan5310.com:3201/public/dashboard/ee8a48c2-7d83-4229-ba12-

619efa7586ce

[6] Tableau Dashboard: https://public.tableau.com/profile/jia.yang#!/

https://www.sciencedirect.com/science/article/pii/S131915781100019X
https://www.vertabelo.com/blog/technical-articles/connecting-borrowers-and-lenders-a-peer-to-peer-lending-platform-data-model
https://www.vertabelo.com/blog/technical-articles/connecting-borrowers-and-lenders-a-peer-to-peer-lending-platform-data-model
https://towardsdatascience.com/p2p-lending-platform-data-analysis-exploratory-data-analysis-in-r-part-1-32eb3f41ab16%20(Link
https://towardsdatascience.com/p2p-lending-platform-data-analysis-exploratory-data-analysis-in-r-part-1-32eb3f41ab16%20(Link
https://github.com/suzygaoo/P2P-lending-platform-database-system
https://www.lucidchart.com/invitations/accept/20158b3f-86ce-4ca7-a47a-e8a8bb58b225
https://www.lucidchart.com/invitations/accept/20158b3f-86ce-4ca7-a47a-e8a8bb58b225
https://public.tableau.com/profile/jia.yang#!/

25

Appendix 1 ER Diagram

